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Electronic transport in bent carbon nanotubes
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We study the electronic transport through uniformly bent carbon nanotubes. For this purpose, we describe
the nanotube with the tight-binding model and calculate the local current flow by employing nonequilibrium
Green’s functions (NEGF) in the Keldysh formalism. In addition, we describe the low-energy excitations using
an effective Dirac equation in curved space with a strain-induced pseudomagnetic field, which can be solved
analytically for the torus geometry in terms of the Mathieu functions. We obtain a perfect quantitative agreement
with the NEGF results. For nanotubes with an armchair edge, already a weak bending of 1% substantially
changes the electronic properties. Depending on the valley, the current of the zero mode flows either on the outer
or the inner side of the torus and, therefore, can be used as a valley splitter. In contrast, the zigzag nanotubes
are largely unaffected by the bending. Our findings are of importance for nanoelectronic applications of carbon
nanotubes and open new possibilities for valleytronics.
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I. INTRODUCTION

One of the most spectacular facts about graphene is that
the low-energy electronic excitations can be, in a good ap-
proximation, described by a two-dimensional massless Dirac
equation known from the relativistic quantum field theory
[1–3]. A lot of literature has already been devoted to the
discussion of possible applications and extensions of this ef-
fective picture [4–6]. Regarding the nanoelectromechanical
properties of the material [7,8], one intriguing observation
relates the elastic deformations of the honeycomb lattice with
an effective artificial gauge potential that couples to the Dirac
field similarly to an electromagnetic vector potential [9–17].
At the same time, the Dirac field couples to the induced
curvature of the deformed two dimensional surface, which
offers a unique quantum simulator of the Dirac equation in
curved spaces [18–22].

Here, we focus on the electronic transport in carbon
nanotubes (CNT) [23–26], which are basically graphene
sheets rolled into cylinders. They have been synthesized and
studied even before graphene [27–29]. Moreover, the na-
noelectromechanical properties [30–33] and, in particular,
elastic deformations have repeatedly gained attention [34–44].
In this paper, we study uniformly bent nanotubes, which take
the form of a segment of a torus (cf. Fig. 1). Thus, in contrast
to mathematical tori [45,46] or tori constructed from defects
[47], we study a doughnut-shaped nanotube realized by elastic
deformations. This particular geometry has the advantage that
it possesses an interesting strain structure while retaining a
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translational symmetry in the toroidal direction, thus being
still tractable analytically.

The strain varies only in the poloidal direction, being com-
pressive on the inner side and tensile on the outer side. This
gives rise to an effective pseudomagnetic field behaving anal-
ogously to an external homogeneous magnetic field oriented
orthogonally to the bent nanotube (cf. Fig. 1). However, the
crucial difference is that it couples with different signs to
the different valley degrees of freedom. This opens the pos-
sibilities of interesting valley separation phenomena, which
we observe and explain below. Such valley splitters are the
key devices for a new type of electronics named valleytronics,
which uses the valley degree of freedom of electrons instead
of their spin or charge [8,48–56]. Since carbon nanotubes are
considered as a possible building block of future computer
chips [57–60], interconnects [61,62], or as nanoelectrome-
chanical sensors [63,64], understanding the current flow in
CNTs is of crucial importance, in particular with respect to
the influence of bending and deformation.

This paper is organized as follows. In Sec. II, we introduce
the discrete system and calculate within the tight-binding
approach the band structure of a bent nanotube with zigzag
(ZZ) and armchair (AC) edges. Then, in Sec. III, we switch
to the continuous description and introduce the Dirac equa-
tion in curved space with the pseudomagnetic field and solve
it both numerically and analytically on a segment of a torus.
In Sec. IV, the results are compared with electronic transport
calculations using nonequilibrium Green’s functions (NEGF)
in the Keldysh formalism. Finally, in Sec. V, we conclude our
findings.

II. SYSTEM

In this paper, we consider a carbon nanotube that is bent to
a segment of a torus, see Fig. 1, which is characterized by the
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FIG. 1. A carbon nanotube with armchair edge uniformly bent
into a segment of a torus. The color shading sketches the current
flowing in θ direction carried by electrons of the valley ν = +1
(calculated for a much larger system with parameters of Fig. 8).
Due to the pseudomagnetic field B(ν ), effectively perpendicular to the
torus, the electrons flow mainly on the inner side (red). In contrast,
for ν = −1, they flow on the outer side of the torus (not shown).

inner radius of the tube ρ and the outer radius R. The ratio of
both radii, γ = ρ

R , is a natural measure of the tube bending.
Note that the bending in Fig. 1 is greatly exaggerated, since
we consider here only γ � 1%. The position on the surface
of the torus can be described by the toroidal angle θ and the
poloidal angle ϕ. Due to the strain, the distances of the carbon
atoms in the toroidal direction are shortened on the inner side
of the torus (ϕ = π/2) while they are elongated on the outer
side (ϕ = −π/2).

Here, we describe the π -electron system by the
Schrödinger equation H |�〉 = E |�〉 with the simple tight-
binding Hamiltonian

H = −
∑
〈n,m〉

tnm(|m〉〈n| + |n〉〈m|), (1)

=
∑
n,k

εn(k)|n, k〉〈n, k|, (2)

where the summation runs only over nearest neighbors 〈n, m〉.
Since the honeycomb lattice of graphene consists of two inter-
connected triangular lattices, A and B, only the π orbitals at
different sublattices, n ∈ A and m ∈ B, are coupled. The tun-
neling amplitudes tnm depend on the poloidal positions of the
atoms n and m. In the second line, we formally write down the
diagonalized Hamiltonian, where |n, k〉 are the Bloch states
with energy εn(k) in band n with wave number k (in the θ

direction).
In pristine graphene, the distances between the neighboring

carbon atoms are all equal, d0 = 0.142 nm, and hence the
tunneling amplitudes are identical, tnm = t0 = 2.8 eV. How-
ever, when strain is applied they get modified according to the
empirical formula

tnm = t0e−β(|n−m|/d0−1), (3)

where β ≈ 3.37 is the material specific Grüneisen parameter
[65–67]. In consequence, on the torus, the tunnel couplings in
toroidal direction become slightly larger on the inner side than
on the outer side. As we restrict ourselves to bendings γ �
1%, the resulting maximum relative change of the tunneling
amplitudes is of the order of δt/t0 ∼ γ β ∼ 3.37%.

In this paper, we consider large tube diameters (� 1 nm)
for which we can neglect the misorientation of π orbitals
[25,34]. Its effect can be estimated via the Slater-Koster for-
mula, δt/t0 = 1 − cos(δφ), where δφ ∼ d0/ρ is the relative

FIG. 2. Band structure of a torus-shaped (a) armchair and
(b) zigzag nanotube as a function of the wave number δk relative
to the Dirac point, where the bending is γ = 1% (green lines). For
comparison, the respective band structure for a straight nanotube is
shown (blue dashed lines). The inset indicates the unit ring (green)
used for the band structure calculation. We used 400 atoms for (a) and
692 atoms for (b) in each ring. The radius is given by ρ ≈ 47.7 d0.

angle between the locally tilted (orthogonal to the nanotube’s
surface) π orbitals [68,69]. For diameters � 1 nm we obtain
δt/t0 � 1%, i.e., the effect of misorientation of π orbitals
is negligible compared to strain. By a similar reasoning, we
can neglect atomic [70] and curvature-enhanced spin-orbit
coupling [71–74], since the latter scales with ∼ρ−1.

As a first step, we discuss the electronic excitation energies
of the system. For straight nanotubes, the periodic boundary
condition along the circumference gives rise to a band struc-
ture composed of vertical cuts through the characteristic Dirac
cone of planar graphene, see Fig. 2. Depending on the chiral-
ity, these cuts can either pass directly through the Dirac points
or beside it. In the former case, one obtains a gapless, linear
dispersion relation and in the latter case, one obtains a band
gap [26]. Here, we discuss only two special chiralities, where
the edge of the nanotube is either in the armchair, Fig. 2(a), or
the zigzag direction, Fig. 2(b). In the armchair case, the two
inequivalent Dirac points are folded back to ±2π/(3

√
3d0),

while for the zigzag case they merge at the  point [25].
For bent nanotubes, we calculate the band structure by

identifying the unit ring, which is periodically repeated in
toroidal direction, see the green atoms in the insets of
Figs. 2(a) and 2(b). Thus, we assume infinite nanotubes where
the rings occur with (super) lattice constants aAC = √

3d0

and aZZ = 3d0 for the armchair and zigzag case, respectively.
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Then, by using Bloch’s theorem, we determine the band struc-
ture εn(k) shown in Fig. 2. We remark that for finite nanotubes,
we expect for the zigzag case additional localized edge states
[75,76].

In Fig. 2(a), the bands εn(δk) (green lines) are shown for an
armchair nanotube, where δk is the wavenumber relative to the
Dirac point. Already a small bending of γ = 1% noticeably
modifies the band structure compared to a straight nanotube
(blue dashed lines). Although the Fermi velocity changes,
the spectrum is still gapless. In contrast, for the bands of a
zigzag nanotube, the same bending of γ = 1% has almost no
influence, see Fig. 2(b).

In the following, we study the bent nanotube in the con-
tinuum limit using an effective Dirac equation in curved
space and we will understand why the influence of bending
is much more severe for armchair nanotubes than for zigzag
nanotubes.

III. CONTINUUM MODEL

In the low-energy expansion around the Dirac cones, the
tight-binding model with smooth and small deformations (1)
can be reduced to the continuous Dirac equation in curved
space [11,18,20] for the spinor ψ = (ψ+, ψ−), where the sign
± originates from the sublattice index and is also referred to as
pseudo spin. The Dirac Hamiltonian HD for the valley ν = ±1
takes the form (h̄ = 1)

HDψ = vF (x) · [p − K(ν)(x) − i �(x)]ψ

= −ivF σ ae j
a(x)

[
∂ j − iK (ν)

j (x) + � j (x)
]
ψ, (4)

where vF (x) is the position-dependent matrix valued Fermi
velocity, p is the momentum operator, K(ν)(x) is the shifted
position of the Dirac cone due to the deformation, and �(x)
is the spin connection [11]. In the second line, we use from
henceforth the Einstein summation convention and write the
Fermi velocity with its contravariant components v

j
F (x) =

vF σ ae j
a (x), where vF = 3t0d0/2 is the flat space value, σ a

are the Pauli matrices, and e j
a (x) are the components of the

frame field ea(x) (zweibein) with a = 1, 2. By inserting the
momentum operator pj = −i∂ j , we can identify the proper
covariant derivative ∂ j + � j (x) for spinors in a local frame.
Finally, the position of the Dirac cone K (ν)

j (x) depends now
on x and couples to the spinor wave function similarly to
an electromagnetic vector potential. Its curl can create a
pseudomagnetic field B(ν)—pseudo because it maintains time
reversal symmetry by pointing in opposite directions in the
two valleys ν = +1 and ν = −1.

In the following, the effective Dirac equation (4) will be
solved analytically for the geometry of a uniformly bent nan-
otube forming a segment of a torus, see Fig. 1. We assume
large radii 2πρ � d0 where the continuum model is expected
to give a valid description of the system. We emphasize that
the torus, in contrast to the cylinder, has a real, intrinsic
curvature. Above, we already introduced the toroidal angu-
lar coordinate θ and the poloidal angular coordinate ϕ, see
Fig. 1. For dimensional reasons, however, it is convenient to
use the coordinates x = (x1, x2) = (ξ, ζ ) defined by ξ = R θ ,
ζ = ρ ϕ and having the unit of length.

A. Strain tensor

For the torus-like deformation we get a tensile strain on the
outer side and a compressive strain on the inner torus side.
The strain tensor of the 2D torus surface

ε̂ =
(

εξξ εξζ

εζξ εζζ

)
(5)

has only one nonzero entry

εξξ = −γ sin (ζ/ρ), (6)

where we consider the effects of strain only up to the first
order of γ . Since we restrict ourselves to γ � 1%, we assume
that the strain is adequately described by Eq. (6) and we do
not need to perform any atomic relaxation calculations [77].

B. Pseudomagnetic field

The deformation shifts the Dirac points from pristine
graphene K(ν)

0 to K(ν)(x) = K(ν)
0 + A(ν)(x), where the pseu-

domagnetic vector potential A(ν)(x) can be obtained directly
from the strain ε̂ [20] and depends on the nanotube orientation
(chirality). For the AC–CNT, we find

K(ν) = K(ν)
0 + ν

β

2

(
εζζ − εξξ

−2εξζ

)
(7)

= ν

[( 4π

3
√

3d0

0

)
+

(
βγ

2d0
sin (ζ/ρ)

0

)]
. (8)

For the ZZ–CNT, we find

K(ν) = K(ν)
0 + ν

β

2

( −2εξζ

εζζ − εξξ

)
(9)

= ν

[(
0
4π

3
√

3d0

)
+

(
0

βγ

2d0
sin (ζ/ρ)

)]
. (10)

Notice that the pseudomagnetic vector potential A(ν) points
in both cases in the ZZ direction. In consequence, the pseu-
domagnetic field B(ν) = ∇ × A(ν) = εi j∂iA

(ν)
j vanishes in the

ZZ case whereas in the AC case it is

B(ν) = −ν
βγ

2ρ d0
cos (ζ/ρ) = −νB0 cos (ζ/ρ), (11)

where we introduced B0 = βγ /(2ρd0). Embedded in three
dimensions, this pseudomagnetic field takes a surprisingly
simple form of a homogeneous field B(ν) pointing parallel
to the direction perpendicular to the plane of the torus, see
Fig. 1. Then, by projecting it onto the surface one obtains
again Eq. (11). Compared to real magnetic fields, these pseu-
domagnetic fields are quite strong [78,79]. For the parameters
of Fig. 2, we find h̄B0/e = 11.5 T.

C. Fermi velocity (effective frame and metric)

The position-dependent Fermi velocity vF (x) can be ob-
tained from the orthonormal frame field ea(x). For the flat
space (corresponding to the straight nanotube) it has the form

e(0)
1 =

(
1
0

)
, e(0)

2 =
(

0
1

)
, (12)

where e(0)
1 points in the axial direction and e(0)

2 points in
the azimuthal direction of the nanotube. For the deformed
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nanotube, the frame field is modified by the effective strain
tensor βε̂ in leading order of γ according to [20,80]

ea(x) = [1 − β ε̂]e(0)
a , (13)

which gives

e1(x) =
(

1 + βγ sin (ζ/ρ)
0

)
, (14)

e2(x) =
(

0
1

)
. (15)

We use the notation e i
a with a = 1, 2 and i = ξ, ζ for the

components of the frame. The frame is then orthogonal,

e i
ae j

b gi j = δab, (16)

with respect to the effective metric

ĝ = 1 + 2β ε̂ ≈
(

[1 − βγ sin (ζ/ρ)]2 0
0 1

)
. (17)

Without the parameter β, this is the metric of the torus. Thus,
the Dirac equation couples to an effective curved geometry
where the deformations are enhanced by the material specific
Grüneisen parameter β > 1.

D. Spin connection

The spin connection �(x) can be completely removed from
the Dirac equation (4) (see also Ref. [81]) by the scaling trans-
formation � = eSψ with S = log( 4

√
det ĝ) (cf. Appendix A

for details). Then, we obtain

HD�(x) = E�(x) (18)

with the rescaled Hamiltonian

HD = eSHDe−S = −ivF σ ae j
a (x)

[
∂ j − iK (ν)

j (x)
]
. (19)

This transformation also changes the normalization condition
for �. For the original wave function ψ , we normalize in
curved space via

1
!=

∫
d2x

√
det ĝψ† · ψ =

∫
d2x �† · �, (20)

where d2x
√

det ĝ is the integral measure [20]. Interestingly,
in the second step this measure is completely removed by
� = eSψ . This means the transformed wave function � is
the natural object to compare with the discrete solution �n =
〈n|�〉 and �m = 〈m|�〉 of the tight-binding model for which
the above normalization condition (20) becomes∑

n∈A
�∗

n�n +
∑
m∈B

�∗
m�m = 1, (21)

by using the lattice discretization
∫

d2x → ∑
n/m and

�±(x) → �n/m for n ∈ A and m ∈ B.

E. Solutions of the Dirac equation

In order to find solutions of the Dirac equation, we make
use of the translational invariance in the toroidal direction and
use the ansatz

�(x) = eikξχ (ζ ) = eikξ

(
χ+(ζ )
χ−(ζ )

)
. (22)

FIG. 3. (a) Band structure of a bent armchair nanotube as a
function of the wave number δk relative to the Dirac point (ν = +1)
with γ = 1% and ρ ≈ 47.7 d0. Numerically obtained solutions from
the tight-binding model (green dots) and the Dirac equation (blue
line) are compared. (b) The zero mode for sublattice A and B is
numerically obtained from the tight-binding model (blue and green
dots) and from the Dirac equation (blue and green solid line). In
addition, approximated analytical solutions in form of Mathieu func-
tions are shown (blue and green dashed lines). The wavenumber is
δk = 1.33 ρ−1 and the energy is ε0 = 0.03 t0, which is indicated by
the red dot in (a).

In the following, we separately discuss the armchair and
zigzag case.

1. Armchair edge

Using the product ansatz from above and the convention
(σ 1, σ 2) = (ν σx, σy), we obtain from Eq. (18) in the leading
order in γ the Dirac Hamiltonian

HD = vF [−iσy∂ζ + σxκ (ζ )], (23)

where we defined

κ (ζ ) = ν δk +
(

ν δk − 1

2d0

)
βγ sin (ζ/ρ) (24)

with δk = k − K (ν)
0,ξ [82]. As a consistency check of the con-

tinuous model, we solve for the eigenvalues and eigenmodes
numerically (solid lines) and compare them with the results
of the tight-binding model (dots), see Fig. 3. The agreement
of the spectrum εn(δk) for an armchair nanotube in Fig. 3(a)
[same spectrum as in Fig. 2(a)] is almost perfect. Only
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for higher energies, deviations become visible. Moreover, in
Fig. 3(b), the lowest-energy eigenstate or the zero mode for a
given wavenumber δk is also surprisingly well described by
the continuous model.

Now, in order to find analytical solutions, we first evaluate
the squared Hamiltonian and find after some algebra

H2
D = v2

F [−iσy∂ζ + σxκ (ζ )]2 (25)

= v2
F

[−∂2
ζ + κ2(ζ ) − σz∂ζ κ (ζ )

]
. (26)

Since H2
D is diagonal, we can solve the eigenvalue problem,

H2
Dχ = E2χ , by means of the decoupled equations

∂2
ζ χ± + [(E/vF )2 − κ2(ζ ) ± ∂ζ κ (ζ )]χ± = 0. (27)

Next, we expand the bracket in the first order in γ and
find [83]

(E/vF )2 − κ2(ζ ) ± ∂ζ κ (ζ ) ≈ a

4ρ2
∓ q

2ρ2
cos(ζ/ρ ∓ ϕ0),

(28)

where we have introduced the parameters

ϕ0 = ν arctan(2 δk ρ), (29)

a =
(

2ρ

vF

)2

[E2 − (vF δk)2], (30)

q = −2βγ
√

1 + (2 δk ρ)2

(
ν δk − 1

2d0

)
ρ. (31)

Switching back to the poloidal angle ϕ = ζ/ρ, we obtain

∂2
ϕχ±(ϕ) + 1

4 [a ∓ 2q cos(ϕ ± ϕ0)]χ±(ϕ) = 0, (32)

which has the form of the Mathieu differential equation [84].
With the periodic boundary condition χ (ϕ + 2π ) = χ (ϕ), the
parameter a becomes restricted to discrete characteristic val-
ues a2m(q) and b2n(q) [85]. For a = a2m with m = 0, 1, 2, . . .,
the solutions are given by the even cosine-like functions

χ±(ϕ) ∼ ce

(
a2m,±q,

ϕ ± ϕ0

2

)
. (33)

For a = b2n with n = 1, 2, . . ., the solutions are odd sine-like
functions

χ±(ϕ) ∼ se

(
b2n,±q,

ϕ ± ϕ0

2

)
. (34)

Henceforth, we will only be interested in the zero mode
χ±(ϕ) ∼ ce(a0,±q,

ϕ±ϕ0

2 ), which has the lowest positive en-
ergy eigenvalue and becomes constant in the limit of vanishing
curvature, γ → 0. In Fig. 3, this solution (dashed lines) is
compared both to the exact eigenmode from the tight-binding
model (dots) and to the numerical solution of the Dirac equa-
tion (solid lines). Deviations originate in the approximation in
Eq. (28).

2. Zigzag edge

For the zigzag edge, we use the convention (σ 1, σ 2) =
(σy, ν σx ) and obtain a similar Dirac Hamiltonian

HD = vF
[−iνσx

(
∂ζ − iK (ν)

ζ

) + σyκ (ζ )
]
, (35)

with

κ (ζ ) = k[1 + βγ sin (ζ/ρ)]. (36)

Since in this case the pseudomagnetic field vanishes, B(ν) = 0,
the pseudomagnetic vector potential K (ν)

ζ can be gauged away
by using

χ = exp

[
i
∫ ζ

0
dζ ′K (ν)

ζ (ζ ′)

]
χ̃ . (37)

Thus, compared to the Dirac equation of the armchair case,
where the leading order correction O(γ ) comes from the
pseudomagnetic field; here, we only have the effect of the
curvature O(γ k), which is additionally suppressed by the
wavenumber k � 1. As a consequence, the bending γ has a
much smaller influence on the electronic properties than in
the armchair case, cf. the spectrum Fig. 2. Analogously to the
armchair case, we again obtain a Mathieu equation

∂2
ϕχ̃±(ϕ) + 1

4 [a ∓ 2q cos(ϕ ± ϕ0)]χ̃±(ϕ) = 0, (38)

with the parameters

ϕ0 = − arctan(2kρ), (39)

a =
(

2ρ

vF

)2

[E2 − (vF k)2], (40)

q = 2βγ
√

1 + (2kρ)2 kρ. (41)

As expected, the parameters are now independent of the val-
ley ν = ±1 since B(ν) = 0. However, it is important to note
that the gauge transformation changes the periodic boundary
condition to [34]

eikϕ2π χ̃ (ϕ + 2π ) = χ̃ (ϕ), (42)

where kϕ = (K (ν)
ζ ρ) mod 1 describes the distance between the

quantized momentum in the ϕ direction from the Dirac point.
Using ρ = √

3N/(2π ) with N being the number of carbon
rings along the nanotube edge, we find kϕ = 2N/3 mod 1 with
the only nonequivalent values kϕ = 0, 1/3, 2/3. Since the
cases kϕ �= 0 lead to complicated analytical solutions we focus
in the following on the gapless case (kϕ = 0) for N = 3 m with
m = 1, 2, . . . and find periodic solutions of the same type as
in Eqs. (33) and (34).

F. Current

The resulting current density flowing through the bent
nanotube is calculated from the solutions ψ of the Dirac
equation (4) via

ji = ψ†σ ae i
aψ (43)

and fulfills the covariant continuity equation

∇i ji = 1√
det ĝ

(∂i

√
det ĝ ji ) = 0. (44)

In fact, it is the quantity

Ji = J0

√
det ĝψ†σ ae i

aψ = J0 χ†σ ae i
aχ, (45)
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FIG. 4. The current profile Jθ (ϕ) for an armchair nanotube with
valley (a) ν = +1 and (b) ν = −1 as a function of the poloidal
angle ϕ and the bending parameter γ . For γ = 0, the current profile
is flat. For γ > 0 the current is concentrated on the inner (outer)
side of the torus for the valley ν = +1 (ν = −1). The parameters
are ρ ≈ 47.7 d0 and ε0 = 0.03 t0, which correspond to the wave
numbers δk = 1.33 ρ−1 and δk = 1.38 ρ−1 for ν = +1 and ν = −1,
respectively.

which should be compared with the actual transport calcu-
lations on the discrete lattice [20]. In the last step, we used
the scaling transformation ψ = e−S�. The parameter J0 is
chosen such that the electron current has proper dimensions
and fulfills

∫ π

−π
dϕJθ (ϕ) = e2δV/h, i.e., each Dirac mode ψ

contributes with the conductance quantum e2/h times the
voltage δV . For the zero mode, we obtain

Jθ (ϕ) ∼ [1 + βγ sin(ϕ)]ce

(
a0, q,

ϕ + ϕ0

2

)
(46)

× ce

(
a0,−q,

ϕ − ϕ0

2

)
,

Jϕ (ϕ) = 0. (47)

In Figs. 4(a) and 4(b), the current Jθ (ϕ) carried by the
zero mode for the armchair edge is shown as a function of
the poloidal angle ϕ and the bending parameter γ for two
different valleys ν = +1 and ν = −1, respectively. We find
a remarkable feature: While for a straight nanotube, γ = 0,
the current for both valleys is homogeneously distributed over
the complete surface, we find that as soon as the nanotube
is bent, one valley current (ν = 1) flows mainly on the inner
side while the other valley current (ν = −1) flows mainly on
the outer side of the torus. The effect is surprisingly strong

FIG. 5. Sketch of a bent nanotube (gray segment) coupled to an
electron source (red segment) and drain (blue segment). The elec-
trodes are modeled by semi-infinite nanotubes. The contact points of
the system are indicated by red (blue) sites for source (drain). Green
sites indicate the surface points of the electrodes.

considering the bending is not larger than γ = 1%. A vivid
explanation can be given in terms of a pseudo Lorentz force,
where according to the left-hand rule electrons are accelerated
perpendicular to the velocity and the pseudomagnetic field.
Since the velocity points in toroidal direction and the pseudo-
magnetic field Bν points down (up) for ν = +1 (ν = −1), see
Fig. 1, the electrons are directed to the inner (outer) side of
the torus.

In the following, these current profiles will be compared
with the lattice current profiles obtained from transport calcu-
lations using the nonequilibrium Green’s function method.

IV. ELECTRON TRANSPORT

Finally, we come back to the discrete model, Eq. (1), to
study the electron transport through the bent nanotube (gray)
by coupling it to an electron source (red) and drain (blue),
see Fig. 5. Here, the leads are modeled by semi-infinite nan-
otubes. First, we consider γ �= 0 where the leads have the
same bending as the interior segment. Then, we also briefly
discuss straight nanotubes with γ = 0 as leads and we find no
qualitative change of the results.

To calculate the local bond current of electrons Jnm from
site m to site n, we use the nonequilibrium Green’s function
approach in the Keldysh formalism [86–90]

Jnm = −2e Re
∫

dω

2π
tnm G<

nm(ω), (48)

with the lesser Green’s function G<, which can be calculated
using the Keldysh formula G< = GR�<(GR)†. Here, the re-
tarded Green’s function is given by GR = (ω − H − �R)−1

with H being the Hamiltonian of Eq. (1). Now, the problem is
reduced to finding the lesser �< and the retarded self energy
�R, which effectively simulate the openness of the quantum
system through the coupled leads. They can be obtained via

�<(ω) =
∑

r=S,D

τ †
r g<

r (ω)τr, (49)

�R(ω) =
∑

r=S,D

τ †
r gR

r (ω)τr, (50)

which describe electrons first tunneling with tunneling matrix
τr from the contact points (red and blue atoms) to the lead r
(green atoms), then propagating with the free (without cou-
pling) lead Green’s functions g<

r and gR
r , and then tunneling

back into the system with τ †
r . The contributions of source (S)
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and drain (D) simply add up. The free lead Green’s functions
are given by

g<
r (ω) = 2π i δ(ω−Hr ) nr, (51)

gR
r (ω) = 1

ω − Hr + i0+ , (52)

where Hr is the single-particle Hamiltonian of the lead r with
eigenvalues εr,n(k) and eigenstates |n, k〉r . To ensure perfect
transmission, we assume a perfect translational invariance in
the θ direction, i.e., the leads have the same strain as the sys-
tem Hamiltonian. In this way, we avoid finite-size effects such
as standing waves or edge states [91] occurring, e.g., in the
wide-band model [88]. The matrix nr describes the occupation
in the lead r and is defined by 〈n, k|nr |n′, k′〉r = 〈c†

r,n′,k′cr,n,k〉r ,

where c†
r,n,k and cr,n,k are the creation and annihilation op-

erators of electrons in the eigenstates |n, k〉r in the bath r.
Thus, g<

r contains information about the occupations whereas
gR

r contains information about the spectrum of the leads. Note
that in order to determine �< and �R only the surface Green’s
functions (at the green sites) are actually needed, which for
quasi-one-dimensional systems can be obtained using a recur-
sive scheme, see Appendix B for details [92]. In the following,
we discuss two different transport scenarios.

A. Leads each in thermodynamic equilibrium

We assume that each electrode is in thermodynamic equi-
librium such that the occupation matrix nr is given by the
Fermi function

nr = f (Hr − μr ) = 1

e(Hr−μr )/(kBT ) + 1
, (53)

with the Boltzmann constant kB, the temperature T , and the
electrochemical potential μr . The lesser Green’s function g<

r
is then completely determined by the spectrum and thus can
be expressed through gR

r via

g<
r (ω) = 2π i δ(ω − Hr ) f (ω − μr ), (54)

= −[
gR

r (ω) − (
gR

r

)†
(ω)

]
f (ω − μr ). (55)

In the following, we choose μS = μ + e δV and μD = μ. For
zero temperature (T → 0), we find the following current:

Jnm = −2e Re

μ+eδV∫
μ

dω

2π
tnm[GR�<

S (GR)†]nm(ω) (56)

≈ e2δV

π
Im tnm[GRS (GR)†]nm(μ), (57)

where only energies in the bias window μ < ω < μ + e δV
contribute since the left and the right moving currents with
ω < μ compensate each other exactly. In the second line, we
enter the linear response regime (small bias voltages δV ) and

FIG. 6. Current profile for an (a) armchair and (b) zigzag nan-
otube with source and drain each in thermodynamic equilibrium. The
numerical NEGF results (green dots) are compared with the numer-
ically solved Dirac equation (blue line) and the analytical solutions
in terms of Mathieu functions (red dashed line). The parameters are
γ = 1%, ρ ≈ 47.7 d0, and (a) μ = 0.03 t0 and (b) μ = 0.025 t0. For
the NEGF calculations, we use the tube length L ≈ 695 d0 corre-
sponding to approximately 160 000 atoms.

introduce the coupling matrix

S = i
[
�R

S − (
�R

S

)†
]

= 2π τ
†
S δ(μ − HS ) τS, (58)

which describes the injected electrons. Note that the delta
function δ(μ − HS ) ensures that only those states with energy
εS,n(k) = μ are considered. In Fig. 6, we employed Eq. (57) to
calculate the current profile Jθ (ϕ) through (a) an armchair and
(b) a zigzag nanotube at electrochemical potential μ chosen
such that the current is carried only by the two zero modes
(n = 0), one in each valley ν = ±1. For the NEGF approach
(green dots), we calculated

Jθ (ϕ) = e(0)
1 ·

∑
n,m∈C

n − m
|n − m|Jnm, (59)

i.e., we performed a vector average of the local bond current
Jnm over the six links n ↔ m of each hexagonal carbon ring
C and associate it with the angles θ and ϕ. We find that
the current is translationally invariant in the θ direction and
thus we only show the ϕ dependence. In the armchair case,
we clearly see that the current is very inhomogeneous and is
concentrated both on the inner and the outer side of the torus.
In the zigzag case, in contrast, the profile is still rather flat but
slightly favors the outer side of the torus.
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FIG. 7. Sketch of the occupation in source (red) and drain (blue).
Here, the electrochemical potentials for the source are μ

(−1)
S = μ +

eδV and μ
(+1)
S = μ. For the drain we choose μ

(−1)
D = μ

(+1)
D = μ

leading to a valley (ν = −1) polarized current in the bias window.

The results are compared with the current Eq. (45) obtained
from the numerically (blue line) and analytically (red dashed
line) solved Dirac equation. Since in the transport calculation
both valleys ν are injected at the source electrode we have to
consider the incoherent sum of the valley polarized currents

Jθ (ϕ) = Jθ
ν=+1(ϕ) + Jθ

ν=−1(ϕ). (60)

We find that the transport results are in perfect agreement
with the numerically solved Dirac equation (23) and (35) for
the armchair and zigzag case, respectively. However, while in
the zigzag case the analytical solution from Eq. (46) works
equally well, in the armchair case we see small deviations due
to the approximation made in Eq. (28).

For the armchair case, we can conclude that the pseudo-
magnetic field B(ν) is responsible for a large current splitting
on the inner and outer side of the torus. In contrast, for the
zigzag case, we find that the absence of a pseudomagnetic
field leads to a much smaller effect. Nonetheless, the pref-
erence of the current (for both valleys) on the outer side is
a pure curvature effect and can be explained in terms of the
semiclassical trajectories of electrons described by geodesics
[8,20,55]. Using the geodesic deviation equation [93], it
immediately becomes apparent that the positive (negative)
curvature on the outer (inner) side of the torus is attractive
(repelling) for the geodesics.

To confirm the results from Fig. 4 with certainty, where
only the valley current ν = +1 flows on the inner side and
only the valley current ν = −1 flows on the outer side of the
torus, we next prepare the source in a valley-polarized state.

B. Valley-polarized leads

If the leads are in thermal equilibrium, the occupation nr

is valley unpolarized since both degenerate valleys, ν = ±1,
always occur as a total mixture in Eq. (57). However, with
Eq. (51) we can choose any nonthermal occupation nr of the
leads. Here, we are interested in valley-polarized leads

nr =
∑
ν=±1

P(ν) f
(
Hr − μ(ν)

r

)
P(ν), (61)

where P(ν) is the projector onto the valley ν. We introduce
for each valley a separate electrochemical potential μ(ν)

r . To
obtain a valley ν polarized current, we choose for the source
electrode μ

(ν)
S = μ + eδV and μ

(−ν)
S = μ and for the (unpo-

larized) drain electrode μ
(ν)
D = μ

(−ν)
D = μ, see Fig. 7. Then,

we can calculate the current for T → 0 with Eq. (57) by using

FIG. 8. Current profile for an armchair nanotube, where only
electrons in the valley (a) ν = +1 and (b) ν = −1 are injected.
The numerical NEGF results (green dots) are compared with the
numerically solved Dirac equation (blue line) and the approximate
analytical solutions in terms of the Mathieu functions (red dashed
line). The insets show the NEGF current vector field (red arrows)
evaluated on the full nanotube, where the background color indi-
cates its absolute value. The parameters are γ = 1%, ρ ≈ 47.7 d0,
and μ = 0.03 t0. For the NEGF calculations, we use a tube length
L ≈ 695 d0 corresponding to approximately 160 000 atoms. (For a
visualization of the current on the nanotube see Fig. 1.)

the simple replacement

S → 
(ν)
S = iP(ν)[�R

S − (
�R

S

)†]
P(ν). (62)

Now we have the tool to precisely inject only one valley ν

into the nanotube. The results are shown in Fig. 8. The insets
show the current vector field (averaged over carbon rings)
on the full nanotube, where the color indicates its absolute
value. Again, we find for the current profiles a perfect agree-
ment between the NEGF results (green dots) and the Dirac
equation (blue line), while there are small deviations from
the analytical solution (red dashed line). Moreover, we can
confirm that the bent nanotube works as a valley splitter. If
electrons in the valley ν = +1 (ν = −1) are injected the cur-
rent flows only on the inner (outer) side of the bent nanotube.
In fact, we find an inner-to-outer current contrast of

max Jθ
ν − min Jθ

ν

max Jθ
ν

≈ 99.6% (63)

for a bending parameter of only γ = 1%.
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FIG. 9. Local current for an armchair nanotube, where source
and drain are straight cylinder nanotubes (γ = 0%) and only elec-
trons with valley ν = +1 are injected. The color indicates the
absolute value. The parameters are γ = 1%, ρ ≈ 47.7 d0, and μ =
0.028 t0. We use a tube length of L ≈ 695 d0 corresponding to ap-
proximately 160 000 atoms.

Finally, in order to better understand the influence of the
form of the electrodes on the local current flow, in Fig. 9,
we repeat the calculations with source and drain now being
straight nanotubes (γ = 0%). Moreover, we modify the sys-
tem such that the bending is smoothly increased from γ = 0%
at the contacts to γ = 1% in the interior of the nanotube with
a characteristic length scale of 100 d0. We inject electrons in
the zero mode of one valley, ν = +1, which for the cylinder
nanotube corresponds to a flat current profile, see Fig. 4.
Nonetheless, we find that as the current reaches the region
with the bending of γ = 1% it again becomes fully localized
on the inner side of the torus, similarly as in the case with
bent electrodes. Therefore, we conclude that the form of the
electrodes has no significant impact on the current flow profile
in the interior of the bent nanotube.

V. CONCLUSIONS

In this paper, we describe the low-energy excitations of
a torus shaped nanotube by an effective Dirac equation in
curved space that includes a coupling to a strain-induced
pseudomagnetic field. We find that the approximate solutions
are given by the Mathieu functions. In particular, the nanotube
with an armchair edge induces a pseudomagnetic field per-
pendicular to the plane of the torus and thus acts as a strong
valley splitter, where the current carried by the zero mode
favors electrons of one valley on the inner side and of the other
valley on the outer side of the torus. The effect is surprisingly
strong leading to an inner-to-outer current contrast of 99.6%
for a small strain of γ = 1%. In contrast, the zigzag nanotubes
are largely unaffected by the bending due to the absence of
the pseudomagnetic field. We compare the analytical solutions
with the results of transport calculations utilizing the nonequi-
librium Green’s function method in the Keldysh formalism.
In order to inject the electrons only in one valley from the
source, we prepare the lead in a valley-polarized state. In all
cases, we get a strong quantitative agreement and thus we
confirm the validity of the effective continuous description of
bent carbon nanotubes based on the Dirac equation in curved
space.

Our findings will be important for electronic devices based
on carbon nanotubes and may lead to new applications in
nanoelectronics such as valley splitters. In our future work,
we plan to address the question of how different chiralities,
either embedded in the atomic structure (beyond the AC and
ZZ cases) or in form of an elastic twist of the nanotube, affect
the local current flow.
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APPENDIX A: SPIN CONNECTION

The spin connection � j that enters the Dirac equation (4)
describes how the zweibein e i

a(x) has to be transformed from
one point to another to maintain an orthonormal frame. It is
defined as

� j = 1
8w jab[σ a, σ b], (A1)

with the rotation coefficients

w jab = eal∇ je
l
b = gml e

m
a

(
∂ je

l
b + l

jke k
b

)
. (A2)

Here, l
jk denote the Christoffel symbols k

i j = 1
2 gkl (∂igl j +

∂ jgil − ∂l gi j ) of which only


ζ
ξξ = βγ

ρ
cos (ζ/ρ), (A3)


ξ

ξζ = 
ξ

ζξ = −βγ

ρ
cos (ζ/ρ), (A4)

are nonzero. Putting all together, we find for the nonzero
elements

wξ21 = −wξ12 = βγ

ρ
cos (ζ/ρ), (A5)

and thus for the spin connection

�ξ = ∓ iν

2
wξ21 σz and �ζ = 0, (A6)

with the Pauli matrix σz. The upper and lower sign is used for
the armchair and zigzag edges, respectively. The correspond-
ing term in the Dirac equation (4) becomes

σ ae j
a � j = ∓ iν

2
wξ21e ξ

1 σ 1σz (A7)

= − 1
2wξ21e ξ

1 σ 2 (A8)

≈ σ 2e ζ
2

(
−1

2
wξ21

)
= σ ae j

a b j, (A9)

where we approximated the expression in leading order in γ

by using e ξ
1 ≈ e ζ

2 = 1. Using the product σ 1σz = ∓iνσ 2, we
find that the spin connection effectively acts like a real vector
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field

bξ = 0 and bζ = −βγ

2ρ
cos (ζ/ρ), (A10)

which can be written as a gradient of a scalar field bj = ∂ jS
with S = log( 4

√
det ĝ). Finally, the field b j can be completely

removed from the Dirac equation (4) by the scaling transfor-
mation � = eSψ .

APPENDIX B: SURFACE GREEN’S FUNCTION

Since the system is quasi-one-dimensional, we can use the
Hamiltonian hR of a unit ring (cf. the green atoms in the
insets of Fig. 2) that couples with τ (τ †) to the neighboring

unit ring to the right (left). Then we can employ the recursive
relations

gR
S,n = (

ω − hR + τgR
S,n−1τ

†
)−1

, (B1)

gR
D,n = (

ω − hR + τ †gD
S,n−1τ

)−1
, (B2)

which relate the retarded surface Green’s function (gR
r,n) of

lead r comprised from n unit rings to the one (gR
r,n−1) com-

prised from n − 1 unit rings. For one ring n = 1, we get gR
S,1 =

gR
D,1 = (ω − hR + i0+)−1. Each time the recursion relation is

applied, a unit ring is added to source and drain. In practice, to
simulate semi-infinite leads (n → ∞), the iteration is stopped
when the surface Green’s function is sufficiently converged.
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